An azide functionalized oligothiophene ligand--a versatile tool for multimodal detection of disease associated protein aggregates.
نویسندگان
چکیده
Ligands for identifying protein aggregates are of great interest as such deposits are the pathological hallmark of a wide range of severe diseases including Alzheimer's and Parkinson's disease. Here we report the synthesis of an azide functionalized fluorescent pentameric oligothiophene that can be utilized as a ligand for multimodal detection of disease-associated protein aggregates. The azide functionalization allows for attachment of the ligand to a surface by conventional click chemistry without disturbing selective interaction with protein aggregates and the oligothiophene-aggregate interaction can be detected by fluorescence or surface plasmon resonance. In addition, a methodology where the oligothiophene ligand is employed as a capturing molecule selective for aggregated proteins in combination with an antibody detecting a distinct peptide/protein is also presented. We foresee that this methodology will offer the possibility to create a variety of multiplex sensing systems for sensitive and selective detection of protein aggregates, the pathological hallmarks of several neurodegenerative diseases.
منابع مشابه
The Structural Basis for Optimal Performance of Oligothiophene-Based Fluorescent Amyloid Ligands: Conformational Flexibility is Essential for Spectral Assignment of a Diversity of Protein Aggregates
Protein misfolding diseases are characterized by deposition of protein aggregates, and optical ligands for molecular characterization of these disease-associated structures are important for understanding their potential role in the pathogenesis of the disease. Luminescent conjugated oligothiophenes (LCOs) have proven useful for optical identification of a broader subset of disease-associated p...
متن کاملA Palette of Fluorescent Thiophene-Based Ligands for the Identification of Protein Aggregates
By replacing the central thiophene unit of an anionic pentameric oligothiophene with other heterocyclic moities, a palette of pentameric thiophene-based ligands with distinct fluorescent properties were synthesized. All ligands displayed superior selectivity towards recombinant amyloid fibrils as well as disease-associated protein aggregates in tissue sections.
متن کاملDistinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish β-Amyloid or Tau Polymorphic Aggregates
The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that c...
متن کاملGd(III) functionalized gold nanorods for multimodal imaging applications.
We demonstrate a novel noncovalent method for producing Gd(III)-functionalized gold nanorods as multimodal contrast agents for MRI and CT imaging. The ligand is connected to the surface of the gold nanorods by a noncovalent bond making the Gd(III) ions directly accessible to water molecules, and resulting in a longitudinal relaxivity as high as 21.3 mM(-1) s(-1). In addition, compared with sphe...
متن کاملFormation of photoresponsive gold nanoparticle networks via click chemistry.
To tailor highly-functionalized gold nanoparticle (GNP) networks, we investigated the GNP network formation with functionalized spacer group via click chemistry. This is based on its high reactivity and mild reaction conditions. The feature of this protocol is the easy approach to versatile GNP functionalization on the basis of the excellent accessibility and good stability of functional dialky...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 63 شماره
صفحات -
تاریخ انتشار 2015